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THEORY OF MULTICAVITY GYROKLYSTRON AMPLIFIER
BASED ON A GREEN'S FUNCTION APPROACH

INTRODUCTION

Gyroklystron amplifiers show great promise as high-power and high-gain devices in the
microwave and millimeter wavelengths. Jory et al. [1] performed the first gyroklystron amplifier
experiment in a two-cavity configuration with cylindrical TE II/ TE I21 modes. Recently, Bollen et
al. [21 have performed a three-cavity gyroklystron amplifier experiment operating with rectangular
TEio1 mode at 4.2 GHz. They achieved an output power of 54 kW with 16% efficiency and 0.2%
bandwidth. To achieve higher gain and moderate bandwidth, a multicavity configuration with stag-
gered tuning will be necessary as in conventional klystrons. The design of such a configuration
requires the optimization of many parameters. The large signal analysis and numerical codes [3-5]
developed previously for two-cavity gyroklystrons can be extended to the multicavity configuration,
but the procedure would require extremely large computation time. Moreover, the bandwidth and
the effect of staggered tuning could not be calculated since the radio frequency (RF) fields are not
determined self-consistently. Therefore, it is necessary to develop an analytical linear theory for
multicavity gyroklystrons. The linear theory will be applicable to the prebunching cavities where
RF field is small, and these results may be used as an input for large signal calculation in the power
extraction cavity to obtain saturation gain and efficiency. Symons and Jory [61 developed a small
signal theory for the two-cavity gyroklystron by using a sinusoidal RF profile and obtained
equivalent circuit parameters. Caplan [7] outlined a small signal self-consistent theory of gyrokly-
stron amplifier based on Maxwell-Vlasov theory. In this report, we develop a self-consistent theory
of the multicavity gyroklystron amplifier in which the electron motion is represented by the gen-
eralized pendulum equation [8,91. The derivation of these equations [10] are outlined in the next
section. These equations are solved in the third section for the multicavity gyroklystron configura-
tion by using a Green's function approach to satisfy appropriate RF field boundary conditions.
Small signal results are then obtained by the method of successive approximation. Effects of axial
beam velocity spread are also included. In the fourth section we calculate the small signal perfor-
mance characteristics of the three-cavity gyroklystron amplifier configuration used by Bollen et al.
[2].

SELF-CONSISTENT EQUATIONS FOR GYROTRONS

Figure 1 illustrates the multicavity gyroklystron amplifier under study. The cavities, separated
by drift regions, are placed in a uniform magnetic field B0 applied parallel to the axes of the cavities
(z-axis). Let rw j and Lj denote the radius and the length of the jth cavity; dj is the length of the
jth drift region. The entrance of the jth cavity is at

iI-
z= Zj = (L; + di).

i=l

An input RF signal and a monoenergetic beam of electrons are injected from the left into the first
cavity. The electrons follow helical trajectories due to the strong uniform magnetic field and
experience perturbing RF fields in the cavities. It is assumed that the RF fields are completely cut
off in the drift regions. Space charge effects are also neglected.

Manuscript approved July 22, 1985.
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COUPLING WAVEGUIDES

GUN

Fig. I - A three-cavity gyroklystron

Consider the beam interaction with the electric field of a TE-type circular waveguide mode.
Under most gyroklystron operating conditions (electron velocity ve much less than phase velocity
v.), the electron beam interaction with RF magnetic field may be neglected. For propagation of a
single TEmn mode, the electric field is given by

E, = RetCmnjkmnJ.(kmnr)~e + (im/r)Jm(kmnr)er}F(z)ei(ext m)], (1)

where w is the wave frequency, J. is a Bessel function of order m, the prime denotes differentia-
tion, and kmn is the transverse wave number. The normalization constant is given by

Cm. = [{ir (X, - m 2)} 112Jm (Xmn)] X (2)

and

kmn xmn/rw, (3)

where xmn is the nth zero of Jm. The axial dependence of the RF fields in the cavities is given by
the complex profile function

F(z) = IF(z)e-if(Z). (4)

IF(Z) I and dt(z)/dz are assumed to be slowly varying functions of z such that X, dIFI < IFI and
dz

similarly for the phase. Here Ac = 2 Tr vz/w.

In uniform external magnetic field, the axial momentum (pz) of the electrons remains con-
stant if the RF magnetic field is neglected. For small values of y = [1 + pi2 + p1I1I/2 , we will
assume that v, is approximately constant. For operation near cyclotron resonance (i.e.,

oi - 0 << co), it is convenient to write the transverse components (p,, p,) of the electrons in

the following form:

x = -p 1 (0 sin V1 (W-r + 0 (t)), (5)

Py = pi (W cos {f1 (tr + ¢(t)}, (6)

where

ft = I e IBo/moy = Cldy, (7)

T =t -to, (8)

and Q, p1 , and 6 are slow-time scale variables; to is the time the electrons enter the interaction
region. Under these approximations, it has been shown [10,111 that the Lorentz force equations
for the electrons can be expressed approximately in the following form in terms of two slow-time
scale variables pi and the phase angle A = c t- T - :

dpi = eICkJ (kr) J5(kmlrL) IFI cosT, (9)
dt

2
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Pi dt = lejCj 1k 1Jm(k Ir0) kmr IFI sin qf + (c - sfl)pL, (10)
dt kml rL

where s is the cyclotron harmonic number and ro and rL are the guiding center radius and the Lar-
mor radius. The phase P in Eqs. (9) and (10) is given by

S = |so (t - to) + Coto- -- (m-s)00 (11)

=A - - (m - s)0o,
where 00 is the polar angle of the guiding center.

The wave equation for the electric field profile function F(z) may be written as [10]

[ dZ2 + 2 [ - l 2

=-i A CmnkmnkJm-s (kmn ro)<pJsJl(kmn rL)e-isA>, (12)
m0 YVII ,av

where Io = nole IvI1,av is the beam current, and Q represents losses from the cavity. In Eq. (12),
<0> denotes an average over initial electron phase AO = w to, the initial guiding center distribution
and initial electron velocity distribution function f (v):

<0> = f(vv (2)2 dAodo.

For a "cold" beam, <0> involves an average only over initial phase and guiding center position.
For this case vIIav = v11.

For fundamental cyclotron harmonic operation (s = 1), Eqs. (9) to (12) can be further sim-
plified by noting that kmn rL << 1. Hence Jji(kmn rL) and Ji(knrL)/1kmn rL can be replaced by the
leading term of the small argument expansion of the Bessel function; i.e.,

Ji(kmnrL) Jl(kmnrL)/kmnrL 1/2.
It is now convenient to introduce a complex slow-time scale transverse momentum given by

p = pe-iA. (13)

Equations (9), (10), and (12) become

dp + i|_Q~
dz vjj -

|e IC.,, km, -(M-1000
2v inJm-i(kmnro) Fe , (14)

and

=- iA OW IOCm,, kmn. J.-, (kmn ro) < pei ( ° l)0>. (15)
Y MOVIIzav

In Eq. (14), we have used the relation d-= vZ d- The generality of Eqs. (14) and (15) can be

increased by a normalization scheme in which the wavelength Xo of the radiation is an arbitrary
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number. For finite bandwidth operation, X0 will refer to the center frequency of the band. The
normalization scheme can be achieved as follows (the normalized quantities are denoted by a bar):

(a) length normalized to Xo(z = zAko)

(b) velocity normalized to c (p = v/c)

(c) frequency normalized to -co =-1
XoL ci

(d) electric and magnetic fields normalized to

(E= eEXd1moc2, B o= eBoXd1moc).

Other quantitiessuch as kmn, p, t, and F are normalized consistently to km,, = kmnXo, p = p/moc,
t = tc/Xo , and F= eF/moc2. After these procedures, Eqs. (14) and (15) become

dp- + i |s- ft |P 0 ~ vE (16)

I d +k21E -do< p(>, (17)

where

k 2= [ -|-] Q-k 1nJ o,

1 Cmnn-- - (18)00
= 1 . Cmn kinJm..(kmnro)Fe (18)

2111 ,av

and
IO= 1 e10 ___ ____ _,(19)

0 21r eM0mYC /),av (Xmn - m X)Jm(Xn")

Equations (16) and (17) constitute a set of nonlinear coupled equations for the gyrotron. In the
next section we give an analytical solution of these equations in the linear approximation.

GREEN'S FUNCTION APPROACH AND LINEAR THEORY

We solve Eqs. (16) and (17) for a "cold" beam where 811Iav = wIl. At the end of this section
we point out the modification necessary to consider axial velocity spread of the beam.

The general solution of Eqs. (16) and (17) may be written as

if AU'5z)dz" -i ZA ') dz'
(Z) = [p-( J E(z')ee zj d z']e 4z (20)

and

E () =ilo lof G (z-, zi') < p- CY') > rz-'

+ Aj sin kz, (y-yj - Li), (21)

where j-1
Zij = (Li + di).

i-I1

|r 02 11/2kz~j = 2 I X_ 121xoJc21QJJ rj

4
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and the detuning parameter

A ll Y=. ( (22)

In Eq. (21) the first term is the particular integral giving the contribution to the field due to the
perturbed current density, and the second term is the homogeneous solution. G(z, z') is the
Green's function and should be chosen to satisfy the correct boundary conditions. If we assume
that E (z) vanishes at both Y = -j and - = - + Lj, then G (Y, F') is represented by

1 . sin k ji sin kz (F'- L-),sin Y < 2'
k-,j sin kz jLT sin kzj ' sin kz, J(-Lj), F' < z (23)

This form of G (z, F') applies to all the cavities except the first and the last ones. In those two cav-
ities, boundary conditions corresponding to the incoming and outgoing waves might be included.
In this report we assume that Eq. (23) applies to the last cavity also. In the first cavity the input
signal produces energy modulation on the electron beam. If the beam current is not too high and
the cavity is short, then the change in energy of the electrons in the first cavity is small and the
input signal is perturbed only slightly by the electron beam. Under these circumstances, the electric
field in the cavity is well represented by the homogeneous solution

E(z) = E01 sin kz, I(LI - Y), (24)

where E 1O is related to the input power incident at z = 0. In all other cavities, the RF field is
induced by the bunched beam, and the homogeneouspart of the solution in Eq. (21) will be
-neglected. We have already mentioned that E(z) = 0 in the drift regions, i.e.,
Zj + Lj < Y < Z + Lj + dj.

In the small signal regime, the two integral Eqs. (20) and (21) may be solved by the method
of successive approximation where EKo will be considered a small quantity. The initial condition are
chosen to be

P5(0) = pji if, o < 00 < 21r,

E(0) = Eoi sin kzIL 1 . (25)

By retaining terms up to first order in E01, we find from Eqs. (20) and (24) that the
transverse momentum at the end of the first cavity (z = LI) of an electron with initial phase C0 is
given by

P(LI, +0) = Aofl - .°l Rieit' ei(- o+x(L1)) (26)
l Pio 0

where

R X= li sin kF,1(L1 -z') e ° dz'

kI{cos (kz,1Lj) - cos (A0LM)1 + i(AO sin k-, l - kz, sin AOL1) (27)

AO = iz- _ 1 (28)

X (Z) = lo'A () )dz- -Aoz + y0l fo "Y z' (29)
y(O) J 0,61 
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5 MIIp ~l- p.L0 I P(Z ) 12 - Plo _ Ze P Z. I Ez'e dz ) (
V 2 yo 2y&2 -Re Z

- -21 I X., 2 (31)

From Eqs. (24), (29), and (30), we have

x(LI) x

= ALI - 30G ReEoiTieTie'}, (32)

where

TI ((A 2 -kZ2 )kz 1J1 cos kzILI + (A0
2 + kz2) sin kziL

-2Aokzl sin AOL}/(& - k7'I )2

+ i{(A 2 - kz2) AoLI sin kzILI + 2Aokz ,(cos AOLI - cos kz 1L1))/(A02 - kZ2,)2 . (33)

The change in y in the first cavity for an electron with initial phase 00 is given to first order in E0 1
by

AX IP(LI) 12 - gil = l etoRe
-- Re[L70I~~~le'00). ~(34)

Yo 2v02 2

Since we have assumed that E(i) = 0 in the drift regions, we find from Eqs. (34) and (30) that the
transverse momentum p- at the end of the first drift region is given by

(LI + di, ko) = P101 L0 R I e' e- iU(TI+ d1).s e-i[0o-X11C0S0kl (35)

where

X11 -= 1 E°1 Tol1(T + RYdj d, (36)

¢NI = Ot) + arg(TI + RIdj) + arg (Eko) = ko + 8.1 (37)

By averaging Eq. (35) over the initial phase ¢0, we get

<j(t 1 + d1)> = ipljJ 1 (XIl) + i E01RXIe I) e(L+d ) 0-Bl (38)

In writing Eq. (38) we have used the relations

I f 2 7 e-'10"01 dO = iJ(x),
2ir fo

1 2 e'xCO-9 dO = Jo(x).
27r 

The presence of the term XI1 cos (00 + 81) in the phase in Eq. (35) shows that the electrons
are bunched although initially they have a uniform phase distribution. XI, may be interpreted as
the "bunching parameter" in the first stage of the amplifier. If the bunching in the first cavity is

6
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neglected and k, is set equal to ir/L, then the bunching parameters XI, given by Eq. (36) reduces
to the expression given by Symons and Jory [6] for the two-cavity gyroklystron. Although ETo is
small, we do not make the small argument expansion for Jo (X1 ,) and JI(XII) with a view toward
the investigation of the effects of nonlinear inertial bunching in long drift regions. p(L1 + dI, 00)
given by Eq. (35) will serve as initial condition for the calculation of p- and E in the second cavity.

In the small signal regime, the phase-averaged momentum (<p>) changes by a small
amount in each cavity and the phase space bunching occurs mainly in the drift regions. Therefore
in Eq. (21), we may make the approximation that <ji> is constant and replace it by its value at

j-1 - -
the entrance of the cavity, i.e., at i = I= (Li + di). With this approximation and neglecting

Z=1
the homogeneous solution (Ai = 0) in Eq. (21), we can solve for p(Y) and E(z) by the method of
successive approximation in all cavities j > 2. After lengthy algebra, the following equations are
obtained correct to first order in ETo. The transverse momentum of the electron at the end of the
jth stage is

p (-+I, 'ko) = PLo 1 - E Jil'hi±1+zj±Ao-ji, (39)

and the electric field profile E(z) in the jth cavity is

(Y) = Eoj e ( ° 1 j- > G(zz)dz. (40)

The complex quantity E01 for I > 2 is defined by

Eo/ = -ilo < T Qz) > ei[ Z o I1l

= 70 ,4-1) + E J(k_)~~_

+ M l81,2) I oX-l)ot, -(- -l (41)
/=1 Pio

where

6, t if I= 2

= 0 if I • 2

Xe Xj= j , Xy ep (42)
j=1 j'=j

X<> = k1 j ly( Tj + Rj dj) |, (43)

XU = 13 ERi(Lj + dj), i < j (44)

Xi, = IXke '-Xe , i < j (45)

and

(11 = arg(E01) + arg(TI + Rldl),

6jj = arg(Eoj) + arg(T. + Rjdj) + 9j-1 , j >2 (46)

7
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6j= arg(Eo1) + arg(Rj), j > 2

81 = 11

tangi = , Xi;, sin ( jjj Xz, cos jj,, j > 2 (47)

'I = k0

tpj = (P1 + 9j - Re e"" 1 j Xj,, eifn". (48)
i-zi j"j

Rj and Tj in Eqs. (39) to (47) are given for j > 2 by

= [ k tan (kzjLj/2)(e'AoLj + 1) - 0 (e j A149

T 1 |kj AoLj tan (kL/2) - ik j _ eOLj -1
T k=T2j AO &A2_ kZ2j 

+ i z 2e - 2 ) (2 + k 2) sin - --2Okj cos - tan -2 | (50)(A 2 -k,2 ,i 2 -2o, cs 2 tn 2

From Eqs. (39) and (48) the terms X0j may be interpreted as generalized "bunching parameter."
Xjj is the contribution from self-perturbations in the jth stage, and Xij is the perturbation transmit-
ted from ith stage of the amplifier.

The average change in v at the end of the jth cavity (z = iz + L,) is shown to be

< A2 > AO j Re >'o -0 l Im ,JI(Xj_l) EOjRj. (51)
VyIo i=1 Vo0 i=1

The efficiency = - < Ay>/(y 0 - 1) in the jth cavity (j > 2) can be calculated by taking the

difference of < Ay > between the ( - )th and the jth cavity. Thus
y

rlj= P ( _10 Im [J1(!_I,)EojRj]. (52)voj~ T6o - 1)
In Eqs. (51) and (52), Im(x) denotes the imaginary part of x. The output power at the end of jth
cavity is

Pout = 7?jPb, (53)

where Pb = VbIb is the beam power. The input signal power PIN is given by

PIN- 11Pb, (54)

where mqI is the efficiency in the first cavity, and U,,, the stored energy in TEmn mode is

JTEo=02C5 Lf 2, (1 -I AJm(x2nn)

1ol |sinh 2klL1 sin 2kL
Jm-l (kinnro) | 2kz'Ll 2kULi

8



NRL REPORT 8935

where kzR and kz' are the real and imaginary parts of kzi. Since 00 is uniformly distributed in the
range 0 < o0 < 2 7r, the average of Ay in the first cavity calculated from Eq. (34) vanishes. To

calculate ql, it is therefore necessary to expand Ay in the first cavity to second order in EoI, and
YO

we obtain for j = 1

< Ay > = °1 JIRI,2 + 532p2o I 1S| (56)
y 2y 2 Vo 3 ii

where

~1 Lk* ,l i(1 -cos 2kzRILI + 1- cosh 2k'Ll
I (AiO2-~22to > I 2 kzRL 1 2 kzlL I

(A 2 - k,*, 212 1z 1 2kzRfi 2IL
+(A& + k, 1

2 )L1 I sinh 2kz'LI sin kzRLi}|
2 2 2kYLI 2kz LfI

,,I+ cos~k
(A 2 -# 

2)2 * + kz 1
2)sin IL 2iAkZI kzIi

cos kVLI - iAO sin kVLI sin kz, - kzjLleI °I + 2iAoRlJ
2 - k12) 2 o-kZ2 A 2 -2 1.

The amplifier gain in dB is

g = 10 loglR POUt (58)
PIN

In the small signal regime, both Put and PIN are proportional to Eo1, and g becomes independent
of PIN. From Eqs. (53) and (57), it is clear that PIN = 0 and g - -o when 711Pb = co Um/Q, with
,qI > 0. This corresponds to the self-oscillation of the input cavity.

If the beam has an axial velocity spread, then Eoj in equations for p-, Xjj, , and A should
V

be replaced by (1,IIav/13) E0j. Furthermore, an average over the initial velocity distribution should

also be performed to calculate the average values of <p> and < A >. The expression for Eo, in
V

Eq. (41) will also involve an average over the initial electron velocity distribution. In the expres-
sion for stored energy U,, in Eq. (46), 813 should be replaced by ill,av. The average over the initial
distribution function is done numerically using a Gaussian distribution.

We have considered the interaction of the electron beam with the TE °m, modes of circular
waveguide. However, the results for TE I mode could be applied to the TE'20 in the rectangular
waveguide with the following substitution [10,11]:

TE 1 TED

kII = xlllrw - 7r/L 

c1 1k 1 1J0 (k 1 1ro) - 2/L JO(7rrol/Lx)

Jj (k1 Ir0) - J (7r rolLO)
Ja(kngrO)hkofrO e Jv(arlotLx)xa7rrOdLx)

Lx and Ly are lengths of the cavity along the x- and y-axis.

9
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The small signal gain is calculated in the next section from Eqs. (52) to (58). The difference
in phase between the output and the input signals can be obtained from the phase of the complex
field amplitude Eoj (Eq. 41) assuming that E01 is real.

RESULTS AND DISCUSSION

In this section we calculate the small signal performance characteristics of a three-cavity
gyroklystron amplifier [2] operating at the fundamental TE' I mode of rectangular cavity. The
parameters of the cavities are: LI = L2= 0.9X0, L3 = 1.1XO, d, = d2 = 1.5X 0 , ro = 0.136XO,
QI = Q2 = 650, and Q3 = 235. Lx of the cavities are chosen to make the resonant frequency (fo)
of the cavities identical and L/L, = 0.9. Results for a "cold" beam (A Vzl V, = 0) are shown in
Figs. 2 to 6.

In Fig. 2 we show the variation of the small signal gain with the magnetic field for three
values of beam current (lb = 1, 3, and 6 A). The beam voltage Vb is 33.5 kV and a = vj/vj1 = 1.0.
The frequency f = 1.0016 fo. As shown in Fig. 1, amplifier operation is possible in different
ranges of the magnetic field. For stable amplifier operation, the beam power, Pb, should be less
than Pbhi (the threshold beam power for onset of oscillations in cavities i = 1, 2, 3). In the case of

lb = 6A, gain occurs for the magnetic field lying in the ranges 5.7 < 2 r- < 5.95 and

5.98 < ° < 6.3. The gain as a function of the magnetic field shows resonance behavior at
SoO

fields where the Doppler-shifted cyclotron frequency is equal to the operating frequency. The peak
at Q 05.79 corresponds to the condition (ci - fl/y)L/vI = 7r for the first two cavities, and the
peak at fl 0 -5.95 corresponds to this condition at the last cavity. Although the gain is high in this
magnetic field range, a stable amplifier operation may not be possible since the gain is very sensi-

tive to variations in the magnetic field. For magnetic field in the range 5.98 < ° < 6.3, the
'00

gain is insenstitive to variations of magnetic field and Pb < pbth (i = 1, 2, 3). Therefore, stable
amplifier operation with relatively high gain is possible in this magnetic field range. In subsequent
calculations, the parameters are optimized for maximum gain in the stable region of operation.

40

_ 30 6 6A

< 20 - K _,3 Fig. 2 - Small signal gain vs magnetic field for

0<20 A\4fib= 1, 3, and 6 A. Other parameters are
Vb= 33.5 kV, a = 1.0, f/fo = 1.0016,

10 A 1A AvZ/vO = O.O.

5.7 6.0 6.2 6.4

2nlQo/c(oo

Figure 3 shows the small signal gain as a function of frequency for three values of
a = vj/vil = 1.0, 1.5, and 2.0 with Vb = 33 kV and lb = 6 A. The magnetic field is optimized for
maximum gain (in the region of stable operation) at each a. The bandwidth at uniform magnetic
field is extremely small (-0.2%). The gain increases and the bandwidth decreases as v1/v11 is
increased. The magnetic field needed for maximum gain also increases with vL/vj1 since vj1

10
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60r

Fig. 3 - Gain as a function of frequency for three
values of a = 1.0, 1.5, and 2.0 for lb = 6 A. Other
parameters are the same as in Fig. 2.

z
0 20

0.0

decreases. The frequency of maximum gain f = 1.0016 fo is insensitive to the change in a. The
variation of gain with a is shown in Fig. 4 for f = 1.0016fo, Vb = 33. kV, and lb = 6 A. The
magnetic field is optimized for maximum gain at each a. The corresponding magnetic fields are
also shown in the figure. Initially, the gain increases linearly with a and then approaches satura-
tion. The phase difference (6) between the input and the output signals is also calculated as a func-
tion of the various parameters such as beam voltage, current, magnetic field, drive power, and a. 6
is found to be a sensitive function of all these parameters except the current. In applications of
gyroklystrons requiring precise phase control such as the RF linear accelerator, it is necessary to
control these parameters very carefully. Figures 5 and 6 show the variation of e with Vb and
27rfo/wo.
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Fig. 4 - Plot of gain and the corresponding optim-
-Q0 ized magnetic field as functions of a. Other parame-
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7TFig. 5 - The variation of the phase difference

(() between the input and output signals as a
function of beam voltage for three values of
magnetic field. Ib = 4.0 A, a = 1.0, and
f/fo= 1.0016.
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3.0 r-

30 kV
Fig. 6 - ( as a function of the magnetic field for
three values of Vb. Other parameters are the
same as in Fig. 5.

n _ I I I I

6.0 6.1 6.2 6.3 6.4

Figures 7 and 8 show the effect of the axial beam velocity. A Gaussian velocity distribution
function is assumed, i.e., f (piL, plj) v- exp{(p, - po) 2/2(Ap )2 } 8 (p2 + p12 -p&). The gain and the
corresponding optimized magnetic fields are shown as a function of Av,/vzo in Fig. 7. The gain
decreases as Av,/vzo increaeses, and the magnetic field needed for optimum gain is also increased.
The dependence of the small signal gain on the magnetic field is shown in Fig. 8 for several values
of Av,/vzo. As the beam velocity spread increases, there is not only a decrease in gain but the
range of the magnetic field for stable amplifier operation also decreases rapidly. Stable operation of
a gyroklystron amplifier for velocity spread Av,/vzo > 15% will be difficult.

60 r (a)

6.4 -

a= 1. 5

_=1.0

6.o

6.2

l I I I I l l

0 0.05 0.1
AVz/Vz

0.15 0.2

(b)
_ . =1.5

_a=1.~~~~~a10

. I I , I , I

0 0.05 0.10
AVz/Vz

0.15 0.20

Fig. 7 - Maximum gain and the corresponding magnetic field as functions of Av,/v, for
a = 1.0 and 1.5. Vb = 33.5 kV, lb = 6 A, and f/fe = 1.0016
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36
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2 TQa/wo

6.3 6.4

Fig. 8 - Gain vs magnetic field for different values
Av,/v, = 0, 0.05, and 0.10 at a = 1.0. Other parame-
ters are the same as in Fig. 7.
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CONCLUSIONS

We have derived a comprehensive small signal theory of the multicavity gyroklystron. An
analytic solution is obtained for the "cold" beam case. The use of the Green's function approach
makes it possible to satisfy the boundary conditions for arbitary k, (hence a), and the gain as a
function of frequency can be calculated. The stagger-tuned cavity configuration can also be investi-
gated. The bandwidth in a uniform magnetic field is found to be very small. The bandwidth can
be increased by using stagger-tuned cavities, but in a uniform magnetic field this leads to a reduc-
tion in gain. Caplan [71 has shown that the gain of the stagger-tuned cavity configuration is signifi-
cantly increased by proper taper of the magnetic field. We plan to extend the present theory to
include a nonuniform field. The present theory also represents the first iteration of a large-signal
theory based on successive approximations. The small signal theory in the bunching cavities can be
combined with a large signal theory in the output cavity to obtain a complete description of the
multicavity gyroklystron amplifier. This theory should become a useful tool for obtaining design
parameters of the multicavity gyroklystron.
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